Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems
نویسنده
چکیده
Periodic travelling waves are a fundamental solution form in oscillatory reactiondiffusion equations. Here I discuss the generation of periodic travelling waves in a reaction-diffusion system of the generic λ-ω form. I present numerical results suggesting that when this system is solved on a semi-infinite domain subject to Dirichlet boundary conditions in which the variables are fixed at zero, periodic travelling waves develop in the domain. The amplitude and speed of these waves are independent of the initial conditions, which I generate randomly in numerical simulations. Using a combination of numerical and analytical methods, I investigate the mechanism of periodic travelling wave selection. By looking for an appropriate similarity solution, I reduce the problem to an ODE system. Using this, I derive a formula for the selected speed and amplitude as a function of parameters. Finally, I discuss applications of this work to ecology.
منابع مشابه
A comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction–diffusion equations
Periodic travelling waves are an important solution form in oscillatory reaction–diffusion equations. I have shown previously that such waves arise naturally near a boundary at which a Dirichlet condition is applied. This result has applications in ecology, providing a potential explanation for the periodic waves seen in a number of natural populations. However, in ecological applications the D...
متن کاملThe effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction–diffusion systems
Many oscillatory biological systems show periodic travelling waves. These are often modelled using coupled reaction–diffusion equations. However, the effects of different movement rates (diffusion coefficients) of the interacting components on the predictions of these equations are largely unknown. Here we investigate the ways in which varying the diffusion coefficients in such equations alters...
متن کاملAbsolute Stability of Wavetrains Can Explain Spatiotemporal Dynamics in Reaction-Diffusion Systems of Lambda-Omega Type
The lambda-omega class of reaction-diffusion equations has received considerable attention because they are more amenable to mathematical investigation than other oscillatory reaction-diffusion systems and include the normal form of any reaction-diffusion system with scalar diffusion close to a standard supercritical Hopf bifurcation. Despite this, detailed studies of the dynamics predicted by ...
متن کاملPeriodic travelling waves in cyclic populations: field studies and reaction-diffusion models.
Periodic travelling waves have been reported in a number of recent spatio-temporal field studies of populations undergoing multi-year cycles. Mathematical modelling has a major role to play in understanding these results and informing future empirical studies. We review the relevant field data and summarize the statistical methods used to detect periodic waves. We then discuss the mathematical ...
متن کاملGlobal exponential stability and existence of periodic solutions for delayed reaction-diffusion BAM neural networks with Dirichlet boundary conditions
*Correspondence: [email protected] 1Institute of Mathematics and Applied Mathematics, Xianyang Normal University, Xianyang, 712000, China Full list of author information is available at the end of the article Abstract In this paper, both global exponential stability and periodic solutions are investigated for a class of delayed reaction-diffusion BAM neural networks with Dirichlet boundary conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 63 شماره
صفحات -
تاریخ انتشار 2003